The paper tackles the power of randomization in the context of locality by analyzing the ability to`boost' the success probability of deciding a distributed language. The main outcome of this analysis is that the distributed computing setting contrasts significantly with the sequential one as far as randomization is concerned. Indeed, we prove that in some cases, the ability to increase the success probability for deciding distributed languages is rather limited. Informally, a (p,q)-decider for a language L is a distributed randomized algorithm which accepts instances in L with probability at least p and rejects instances outside of L with probability at least q. It is known that every hereditary language that can be decided in t rounds by a (p,q)-decider, where p^2+q>1, can actually be decided deterministically in O(t) rounds. In one of our results we give evidence supporting the conjecture that the above statement holds for all distributed languages. This is achieved by considering the restricted case of path topologies. We then turn our attention to the range below the aforementioned threshold, namely, the case where p^2+q\leq1. We define B_k(t) to be the set of all languages decidable in at most t rounds by a (p,q)-decider, where p^{1+1/k}+q>1. It is easy to see that every language is decidable (in zero rounds) by a (p,q)-decider satisfying p+q=1. Hence, the hierarchy B_k provides a spectrum of complexity classes between determinism and complete randomization. We prove that all these classes are separated: for every integer k\geq 1, there exists a language L satisfying L\in B_{k+1}(0) but L\notin B_k(t) for any t=o(n). In addition, we show that B_\infty(t) does not contain all languages, for any t=o(n). Finally, we show that if the inputs can be restricted in certain ways, then the ability to boost the success probability becomes almost null.
View on arXiv