70
35

Copula Mixture Model for Dependency-seeking Clustering

Abstract

We introduce a copula mixture model to perform dependency-seeking clustering when co-occurring samples from different data sources are available. The model takes advantage of the great flexibility offered by the copulas framework to extend mixtures of Canonical Correlation Analysis to multivariate data with arbitrary continuous marginal densities. We formulate our model as a non-parametric Bayesian mixture, while providing efficient MCMC inference. Experiments on synthetic and real data demonstrate that the increased flexibility of the copula mixture significantly improves the clustering and the interpretability of the results.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.