ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.6422
67
82

An Online Boosting Algorithm with Theoretical Justifications

27 June 2012
Shang-Tse Chen
Hsuan-Tien Lin
Chi-Jen Lu
ArXivPDFHTML
Abstract

We study the task of online boosting--combining online weak learners into an online strong learner. While batch boosting has a sound theoretical foundation, online boosting deserves more study from the theoretical perspective. In this paper, we carefully compare the differences between online and batch boosting, and propose a novel and reasonable assumption for the online weak learner. Based on the assumption, we design an online boosting algorithm with a strong theoretical guarantee by adapting from the offline SmoothBoost algorithm that matches the assumption closely. We further tackle the task of deciding the number of weak learners using established theoretical results for online convex programming and predicting with expert advice. Experiments on real-world data sets demonstrate that the proposed algorithm compares favorably with existing online boosting algorithms.

View on arXiv
Comments on this paper