ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.5295
74
139

Improved Memory-Bounded Dynamic Programming for Decentralized POMDPs

20 June 2012
Sven Seuken
S. Zilberstein
ArXivPDFHTML
Abstract

Memory-Bounded Dynamic Programming (MBDP) has proved extremely effective in solving decentralized POMDPs with large horizons. We generalize the algorithm and improve its scalability by reducing the complexity with respect to the number of observations from exponential to polynomial. We derive error bounds on solution quality with respect to this new approximation and analyze the convergence behavior. To evaluate the effectiveness of the improvements, we introduce a new, larger benchmark problem. Experimental results show that despite the high complexity of decentralized POMDPs, scalable solution techniques such as MBDP perform surprisingly well.

View on arXiv
Comments on this paper