ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.2743
26
18

Confidence bands for multivariate and time dependent inverse regression models

13 June 2012
K. Proksch
N. Bissantz
Holger Dette
ArXivPDFHTML
Abstract

Uniform asymptotic confidence bands for a multivariate regression function in an inverse regression model with a convolution-type operator are constructed. The results are derived using strong approximation methods and a limit theorem for the supremum of a stationary Gaussian field over an increasing system of sets. As a particular application, asymptotic confidence bands for a time dependent regression function ft(x)f_t(x)ft​(x) (x∈Rd,t∈Rx\in \mathbb {R}^d,t\in \mathbb {R}x∈Rd,t∈R) in a convolution-type inverse regression model are obtained. Finally, we demonstrate the practical feasibility of our proposed methods in a simulation study and an application to the estimation of the luminosity profile of the elliptical galaxy NGC5017. To the best knowledge of the authors, the results presented in this paper are the first which provide uniform confidence bands for multivariate nonparametric function estimation in inverse problems.

View on arXiv
Comments on this paper