132
60
v1v2 (latest)

Bayesian optimal adaptive estimation using a sieve prior

Abstract

We derive rates of contraction of posterior distributions on nonparametric models resulting from sieve priors. The aim of the paper is to provide general conditions to get posterior rates when the parameter space has a general structure, and rate adaptation when the parameter space is, e.g., a Sobolev class. The conditions employed, although standard in the literature, are combined in a different way. The results are applied to density, regression, nonlinear autoregression and Gaussian white noise models. In the latter we have also considered a loss function which is different from the usual l2 norm, namely the pointwise loss. In this case it is possible to prove that the adaptive Bayesian approach for the l2 loss is strongly suboptimal and we provide a lower bound on the rate.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.