ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1204.1688
55
20
v1v2v3 (latest)

The asymptotics of ranking algorithms

7 April 2012
John C. Duchi
Lester W. Mackey
Michael I. Jordan
ArXiv (abs)PDFHTML
Abstract

We consider the predictive problem of supervised ranking, where the task is to rank sets of candidate items returned in response to queries. Although there exist statistical procedures that come with guarantees of consistency in this setting, these procedures require that individuals provide a complete ranking of all items, which is rarely feasible in practice. Instead, individuals routinely provide partial preference information, such as pairwise comparisons of items, and more practical approaches to ranking have aimed at modeling this partial preference data directly. As we show, however, such an approach raises serious theoretical challenges. Indeed, we demonstrate that many commonly used surrogate losses for pairwise comparison data do not yield consistency; surprisingly, we show inconsistency even in low-noise settings. With these negative results as motivation, we present a new approach to supervised ranking based on aggregation of partial preferences, and we develop UUU-statistic-based empirical risk minimization procedures. We present an asymptotic analysis of these new procedures, showing that they yield consistency results that parallel those available for classification. We complement our theoretical results with an experiment studying the new procedures in a large-scale web-ranking task.

View on arXiv
Comments on this paper