ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1203.3528
68
29

Rollout Sampling Policy Iteration for Decentralized POMDPs

15 March 2012
Feng Wu
S. Zilberstein
Xiaoping Chen
ArXivPDFHTML
Abstract

We present decentralized rollout sampling policy iteration (DecRSPI) - a new algorithm for multi-agent decision problems formalized as DEC-POMDPs. DecRSPI is designed to improve scalability and tackle problems that lack an explicit model. The algorithm uses Monte- Carlo methods to generate a sample of reachable belief states. Then it computes a joint policy for each belief state based on the rollout estimations. A new policy representation allows us to represent solutions compactly. The key benefits of the algorithm are its linear time complexity over the number of agents, its bounded memory usage and good solution quality. It can solve larger problems that are intractable for existing planning algorithms. Experimental results confirm the effectiveness and scalability of the approach.

View on arXiv
Comments on this paper