ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1203.3453
70
154

Calibrating Data to Sensitivity in Private Data Analysis

15 March 2012
Davide Proserpio
S. Goldberg
Frank McSherry
ArXivPDFHTML
Abstract

We present an approach to differentially private computation in which one does not scale up the magnitude of noise for challenging queries, but rather scales down the contributions of challenging records. While scaling down all records uniformly is equivalent to scaling up the noise magnitude, we show that scaling records non-uniformly can result in substantially higher accuracy by bypassing the worst-case requirements of differential privacy for the noise magnitudes. This paper details the data analysis platform wPINQ, which generalizes the Privacy Integrated Query (PINQ) to weighted datasets. Using a few simple operators (including a non-uniformly scaling Join operator) wPINQ can reproduce (and improve) several recent results on graph analysis and introduce new generalizations (e.g., counting triangles with given degrees). We also show how to integrate probabilistic inference techniques to synthesize datasets respecting more complicated (and less easily interpreted) measurements.

View on arXiv
Comments on this paper