ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1203.1269
48
15

A Short Note on Gaussian Process Modeling for Large Datasets using Graphics Processing Units

6 March 2012
M. Franey
P. Ranjan
H. Chipman
    GP
ArXivPDFHTML
Abstract

The graphics processing unit (GPU) has emerged as a powerful and cost effective processor for general performance computing. GPUs are capable of an order of magnitude more floating-point operations per second as compared to modern central processing units (CPUs), and thus provide a great deal of promise for computationally intensive statistical applications. Fitting complex statistical models with a large number of parameters and/or for large datasets is often very computationally expensive. In this study, we focus on Gaussian process (GP) models -- statistical models commonly used for emulating expensive computer simulators. We demonstrate that the computational cost of implementing GP models can be significantly reduced by using a CPU+GPU heterogeneous computing system over an analogous implementation on a traditional computing system with no GPU acceleration. Our small study suggests that GP models are fertile ground for further implementation on CPU+GPU systems.

View on arXiv
Comments on this paper