ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1202.5536
105
40
v1v2v3 (latest)

Detecting Positive Correlations in a Multivariate Sample

24 February 2012
E. Arias-Castro
Sébastien Bubeck
Gábor Lugosi
ArXiv (abs)PDFHTML
Abstract

We consider the problem of testing whether a correlation matrix of a multivariate normal population is the identity matrix. We focus on sparse classes of alternatives where only a few entries are nonzero and, in fact, positive. We derive a general lower bound applicable to various classes and study the performance of some near-optimal tests. We pay special attention to computational feasibility and construct near-optimal tests that can be computed efficiently. Finally, we apply our results to prove new lower bounds for the clique number of high-dimensional random geometric graphs.

View on arXiv
Comments on this paper