ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1202.3726
74
42

Active Semi-Supervised Learning using Submodular Functions

14 February 2012
Andrew Guillory
J. Bilmes
    OffRL
ArXiv (abs)PDFHTML
Abstract

We consider active, semi-supervised learning in an offline transductive setting. We show that a previously proposed error bound for active learning on undirected weighted graphs can be generalized by replacing graph cut with an arbitrary symmetric submodular function. Arbitrary non-symmetric submodular functions can be used via symmetrization. Different choices of submodular functions give different versions of the error bound that are appropriate for different kinds of problems. Moreover, the bound is deterministic and holds for adversarially chosen labels. We show exactly minimizing this error bound is NP-complete. However, we also introduce for any submodular function an associated active semi-supervised learning method that approximately minimizes the corresponding error bound. We show that the error bound is tight in the sense that there is no other bound of the same form which is better. Our theoretical results are supported by experiments on real data.

View on arXiv
Comments on this paper