ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1202.3482
59
18

The local geometry of finite mixtures

16 February 2012
Elisabeth Gassiat
R. Handel
ArXivPDFHTML
Abstract

We establish that for q>=1, the class of convex combinations of q translates of a smooth probability density has local doubling dimension proportional to q. The key difficulty in the proof is to control the local geometric structure of mixture classes. Our local geometry theorem yields a bound on the (bracketing) metric entropy of a class of normalized densities, from which a local entropy bound is deduced by a general slicing procedure.

View on arXiv
Comments on this paper