59
83

Multipower variation for Brownian semistationary processes

Abstract

In this paper we study the asymptotic behaviour of power and multipower variations of processes YY:\[Y_t=\int_{-\in fty}^tg(t-s)\sigma_sW(\mathrm{d}s)+Z_t,\] where g:(0,)Rg:(0,\infty)\rightarrow\mathbb{R} is deterministic, σ>0\sigma >0 is a random process, WW is the stochastic Wiener measure and ZZ is a stochastic process in the nature of a drift term. Processes of this type serve, in particular, to model data of velocity increments of a fluid in a turbulence regime with spot intermittency σ\sigma. The purpose of this paper is to determine the probabilistic limit behaviour of the (multi)power variations of YY as a basis for studying properties of the intermittency process σ\sigma. Notably the processes YY are in general not of the semimartingale kind and the established theory of multipower variation for semimartingales does not suffice for deriving the limit properties. As a key tool for the results, a general central limit theorem for triangular Gaussian schemes is formulated and proved. Examples and an application to the realised variance ratio are given.

View on arXiv
Comments on this paper