Shuffled Graph Classification: Theory and Connectome Applications
Joshua T. Vogelstein
Carey E. Priebe

Abstract
We develop a formalism to address statistical pattern recognition of graph valued data. Of particular interest is the case of all graphs having the same number of uniquely labeled vertices. When the vertex labels are latent, such graphs are called shuffled graphs. Our formalism provides insight to trivially answer a number of open statistical questions including: (i) under what conditions does shuffling the vertices degrade classification performance and (ii) do universally consistent graph classifiers exist? The answers to these questions lead to practical heuristic algorithms with state-of-the-art finite sample performance, in agreement with our theoretical asymptotics.
View on arXivComments on this paper