ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1112.3914
79
81

Robust empirical mean Estimators

16 December 2011
M. Lerasle
R. I. Oliveira
ArXivPDFHTML
Abstract

We study robust estimators of the mean of a probability measure PPP, called robust empirical mean estimators. This elementary construction is then used to revisit a problem of aggregation and a problem of estimator selection, extending these methods to not necessarily bounded collections of previous estimators. We consider then the problem of robust MMM-estimation. We propose a slightly more complicated construction to handle this problem and, as examples of applications, we apply our general approach to least-squares density estimation, to density estimation with K\"ullback loss and to a non-Gaussian, unbounded, random design and heteroscedastic regression problem. Finally, we show that our strategy can be used when the data are only assumed to be mixing.

View on arXiv
Comments on this paper