ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1112.1333
68
264
v1v2 (latest)

Reaching an Optimal Consensus: Dynamical Systems that Compute Intersections of Convex Sets

6 December 2011
Guodong Shi
Karl H. Johansson
Yiguang Hong
ArXiv (abs)PDFHTML
Abstract

In this paper, multi-agent systems minimizing a sum of objective functions, where each component is only known to a particular node, is considered for continuous-time dynamics with time-varying interconnection topologies. Assuming that each node can observe a convex solution set of its optimization component, and the intersection of all such sets is nonempty, the considered optimization problem is converted to an intersection computation problem. By a simple distributed control rule, the considered multi-agent system with continuous-time dynamics achieves not only a consensus, but also an optimal agreement within the optimal solution set of the overall optimization objective. Directed and bidirectional communications are studied, respectively, and connectivity conditions are given to ensure a global optimal consensus. In this way, the corresponding intersection computation problem is solved by the proposed decentralized continuous-time algorithm. We establish several important properties of the distance functions with respect to the global optimal solution set and a class of invariant sets with the help of convex and non-smooth analysis.

View on arXiv
Comments on this paper