ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1111.5867
40
16

Suboptimality of Nonlocal Means for Images with Sharp Edges

24 November 2011
A. Maleki
Manjari Narayan
Richard G. Baraniuk
ArXivPDFHTML
Abstract

We conduct an asymptotic risk analysis of the nonlocal means image denoising algorithm for the Horizon class of images that are piecewise constant with a sharp edge discontinuity. We prove that the mean square risk of an optimally tuned nonlocal means algorithm decays according to n−1log⁡1/2+ϵnn^{-1}\log^{1/2+\epsilon} nn−1log1/2+ϵn, for an nnn-pixel image with ϵ>0\epsilon>0ϵ>0. This decay rate is an improvement over some of the predecessors of this algorithm, including the linear convolution filter, median filter, and the SUSAN filter, each of which provides a rate of only n−2/3n^{-2/3}n−2/3. It is also within a logarithmic factor from optimally tuned wavelet thresholding. However, it is still substantially lower than the the optimal minimax rate of n−4/3n^{-4/3}n−4/3.

View on arXiv
Comments on this paper