ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1110.6084
41
173

The multi-armed bandit problem with covariates

27 October 2011
Vianney Perchet
Philippe Rigollet
ArXivPDFHTML
Abstract

We consider a multi-armed bandit problem in a setting where each arm produces a noisy reward realization which depends on an observable random covariate. As opposed to the traditional static multi-armed bandit problem, this setting allows for dynamically changing rewards that better describe applications where side information is available. We adopt a nonparametric model where the expected rewards are smooth functions of the covariate and where the hardness of the problem is captured by a margin parameter. To maximize the expected cumulative reward, we introduce a policy called Adaptively Binned Successive Elimination (abse) that adaptively decomposes the global problem into suitably "localized" static bandit problems. This policy constructs an adaptive partition using a variant of the Successive Elimination (se) policy. Our results include sharper regret bounds for the se policy in a static bandit problem and minimax optimal regret bounds for the abse policy in the dynamic problem.

View on arXiv
Comments on this paper