ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1110.4531
53
10
v1v2v3v4 (latest)

Regression for sets of polynomial equations

20 October 2011
Franz J. Király
P. V. Bünau
J. Müller
Duncan A. J. Blythe
F. Meinecke
K. Müller
ArXiv (abs)PDFHTML
Abstract

We propose a method called ideal regression for approximating an arbitrary system of polynomial equations by a system of a particular type. Using techniques from approximate computational algebraic geometry, we show how we can solve ideal regression directly without resorting to numerical optimization. Ideal regression is useful whenever the solution to a learning problem can be described by a system of polynomial equations. As an example, we demonstrate how to formulate Stationary Subspace Analysis (SSA), a source separation problem, in terms of ideal regression, which also yields a consistent estimator for SSA. We then compare this estimator in simulations with previous optimization-based approaches for SSA.

View on arXiv
Comments on this paper