ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1110.3843
64
153

Robustness of Information Diffusion Algorithms to Locally Bounded Adversaries

17 October 2011
Haotian Zhang
S. Sundaram
    AAML
ArXivPDFHTML
Abstract

We consider the problem of diffusing information in networks that contain malicious nodes. We assume that each normal node in the network has no knowledge of the network topology other than an upper bound on the number of malicious nodes in its neighborhood. We introduce a topological property known as r-robustness of a graph, and show that this property provides improved bounds on tolerating malicious behavior, in comparison to traditional concepts such as connectivity and minimum degree. We use this topological property to analyze the canonical problems of distributed consensus and broadcasting, and provide sufficient conditions for these operations to succeed. Finally, we provide a construction for r-robust graphs and show that the common preferential-attachment model for scale-free networks produces a robust graph.

View on arXiv
Comments on this paper