ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1109.4603
69
60

Explicit Approximations of the Gaussian Kernel

21 September 2011
Andrew Cotter
Joseph Keshet
Nathan Srebro
ArXivPDFHTML
Abstract

We investigate training and using Gaussian kernel SVMs by approximating the kernel with an explicit finite- dimensional polynomial feature representation based on the Taylor expansion of the exponential. Although not as efficient as the recently-proposed random Fourier features [Rahimi and Recht, 2007] in terms of the number of features, we show how this polynomial representation can provide a better approximation in terms of the computational cost involved. This makes our "Taylor features" especially attractive for use on very large data sets, in conjunction with online or stochastic training.

View on arXiv
Comments on this paper