ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1109.1606
109
15

Online Learning for Combinatorial Network Optimization with Restless Markovian Rewards

8 September 2011
Yi Gai
Bhaskar Krishnamachari
M. Liu
    OffRL
ArXiv (abs)PDFHTML
Abstract

Combinatorial network optimization algorithms that compute optimal structures taking into account edge weights form the foundation for many network protocols. Examples include shortest path routing, minimal spanning tree computation, maximum weighted matching on bipartite graphs, etc. We present CLRMR, the first online learning algorithm that efficiently solves the stochastic version of these problems where the underlying edge weights vary as independent Markov chains with unknown dynamics. The performance of an online learning algorithm is characterized in terms of regret, defined as the cumulative difference in rewards between a suitably-defined genie, and that obtained by the given algorithm. We prove that, compared to a genie that knows the Markov transition matrices and uses the single-best structure at all times, CLRMR yields regret that is polynomial in the number of edges and nearly-logarithmic in time.

View on arXiv
Comments on this paper