ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1108.5668
49
55

Datum-Wise Classification: A Sequential Approach to Sparsity

29 August 2011
Gabriel Dulac-Arnold
Ludovic Denoyer
Philippe Preux
Patrick Gallinari
ArXivPDFHTML
Abstract

We propose a novel classification technique whose aim is to select an appropriate representation for each datapoint, in contrast to the usual approach of selecting a representation encompassing the whole dataset. This datum-wise representation is found by using a sparsity inducing empirical risk, which is a relaxation of the standard L 0 regularized risk. The classification problem is modeled as a sequential decision process that sequentially chooses, for each datapoint, which features to use before classifying. Datum-Wise Classification extends naturally to multi-class tasks, and we describe a specific case where our inference has equivalent complexity to a traditional linear classifier, while still using a variable number of features. We compare our classifier to classical L 1 regularized linear models (L 1-SVM and LARS) on a set of common binary and multi-class datasets and show that for an equal average number of features used we can get improved performance using our method.

View on arXiv
Comments on this paper