ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1108.0404
58
3
v1v2 (latest)

Exploiting Agent and Type Independence in Collaborative Graphical Bayesian Games

1 August 2011
F. Oliehoek
Shimon Whiteson
M. Spaan
ArXiv (abs)PDFHTML
Abstract

Efficient collaborative decision making is an important challenge for multiagent systems. Finding optimal joint actions is especially challenging when each agent has only imperfect information about the state of its environment. Such problems can be modeled as collaborative Bayesian games in which each agent receives private information in the form of its type. However, representing and solving such games requires space and computation time exponential in the number of agents. This article introduces collaborative graphical Bayesian games (CGBGs), which facilitate more efficient collaborative decision making by decomposing the global payoff function as the sum of local payoff functions that depend on only a few agents. We propose a framework for the efficient solution of CGBGs based on the insight that they posses two different types of independence, which we call agent independence and type independence. In particular, we present a factor graph representation that captures both forms of independence and thus enables efficient solutions. In addition, we show how this representation can provide leverage in sequential tasks by using it to construct a novel method for decentralized partially observable Markov decision processes. Experimental results in both random and benchmark tasks demonstrate the improved scalability of our methods compared to several existing alternatives.

View on arXiv
Comments on this paper