80
44

A nonparametric empirical Bayes framework for large-scale multiple testing

Abstract

We propose a flexible and identifiable version of the two-groups model, motivated by hierarchical Bayes considerations, that features an empirical null and a semiparametric mixture model for the non-null cases. We use a computationally efficient predictive recursion marginal likelihood procedure to estimate the model parameters, even the nonparametric mixing distribution. This leads to a nonparametric empirical Bayes testing procedure, which we call PRtest, based on thresholding the estimated local false discovery rates. Simulations and real-data examples demonstrate that, compared to existing approaches, PRtest's careful handling of the non-null density can give a much better fit in the tails of the mixture distribution which, in turn, can lead to more realistic conclusions.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.