ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1106.3395
60
69

Decoding finger movements from ECoG signals using switching linear models

17 June 2011
Rémi Flamary
A. Rakotomamonjy
ArXiv (abs)PDFHTML
Abstract

One of the major challenges of ECoG-based Brain-Machine Interfaces is the movement prediction of a human subject. Several methods exist to predict an arm 2-D trajectory. The fourth BCI Competition gives a dataset in which the aim is to predict individual finger movements (5-D trajectory). The difficulty lies in the fact that there is no simple relation between ECoG signals and finger movement. We propose in this paper to decode finger flexions using switching models. This method permits to simplify the system as it is now described as an ensemble of linear models depending on an internal state. We show that an interesting accuracy prediction can be obtained by such a model.

View on arXiv
Comments on this paper