ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1104.5186
128
57

Finding Dense Clusters via "Low Rank + Sparse" Decomposition

27 April 2011
Samet Oymak
B. Hassibi
    GNN
ArXivPDFHTML
Abstract

Finding "densely connected clusters" in a graph is in general an important and well studied problem in the literature \cite{Schaeffer}. It has various applications in pattern recognition, social networking and data mining \cite{Duda,Mishra}. Recently, Ames and Vavasis have suggested a novel method for finding cliques in a graph by using convex optimization over the adjacency matrix of the graph \cite{Ames, Ames2}. Also, there has been recent advances in decomposing a given matrix into its "low rank" and "sparse" components \cite{Candes, Chandra}. In this paper, inspired by these results, we view "densely connected clusters" as imperfect cliques, where imperfections correspond missing edges, which are relatively sparse. We analyze the problem in a probabilistic setting and aim to detect disjointly planted clusters. Our main result basically suggests that, one can find \emph{dense} clusters in a graph, as long as the clusters are sufficiently large. We conclude by discussing possible extensions and future research directions.

View on arXiv
Comments on this paper