ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1104.0354
50
166

Low-rank Matrix Recovery from Errors and Erasures

3 April 2011
Yudong Chen
A. Jalali
Sujay Sanghavi
C. Caramanis
ArXivPDFHTML
Abstract

This paper considers the recovery of a low-rank matrix from an observed version that simultaneously contains both (a) erasures: most entries are not observed, and (b) errors: values at a constant fraction of (unknown) locations are arbitrarily corrupted. We provide a new unified performance guarantee on when the natural convex relaxation of minimizing rank plus support succeeds in exact recovery. Our result allows for the simultaneous presence of random and deterministic components in both the error and erasure patterns. On the one hand, corollaries obtained by specializing this one single result in different ways recover (up to poly-log factors) all the existing works in matrix completion, and sparse and low-rank matrix recovery. On the other hand, our results also provide the first guarantees for (a) recovery when we observe a vanishing fraction of entries of a corrupted matrix, and (b) deterministic matrix completion.

View on arXiv
Comments on this paper