ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1102.2925
41
197

Limiting Laws of Coherence of Random Matrices with Applications to Testing Covariance Structure and Construction of Compressed Sensing Matrices

14 February 2011
Tony Cai
Tiefeng Jiang
ArXivPDFHTML
Abstract

Testing covariance structure is of significant interest in many areas of statistical analysis and construction of compressed sensing matrices is an important problem in signal processing. Motivated by these applications, we study in this paper the limiting laws of the coherence of an n×pn\times pn×p random matrix in the high-dimensional setting where ppp can be much larger than nnn. Both the law of large numbers and the limiting distribution are derived. We then consider testing the bandedness of the covariance matrix of a high dimensional Gaussian distribution which includes testing for independence as a special case. The limiting laws of the coherence of the data matrix play a critical role in the construction of the test. We also apply the asymptotic results to the construction of compressed sensing matrices.

View on arXiv
Comments on this paper