ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1102.2254
44
29

Matrix completion with column manipulation: Near-optimal sample-robustness-rank tradeoffs

10 February 2011
Yudong Chen
Huan Xu
C. Caramanis
Sujay Sanghavi
ArXivPDFHTML
Abstract

This paper considers the problem of matrix completion when some number of the columns are completely and arbitrarily corrupted, potentially by a malicious adversary. It is well-known that standard algorithms for matrix completion can return arbitrarily poor results, if even a single column is corrupted. One direct application comes from robust collaborative filtering. Here, some number of users are so-called manipulators who try to skew the predictions of the algorithm by calibrating their inputs to the system. In this paper, we develop an efficient algorithm for this problem based on a combination of a trimming procedure and a convex program that minimizes the nuclear norm and the ℓ1,2\ell_{1,2}ℓ1,2​ norm. Our theoretical results show that given a vanishing fraction of observed entries, it is nevertheless possible to complete the underlying matrix even when the number of corrupted columns grows. Significantly, our results hold without any assumptions on the locations or values of the observed entries of the manipulated columns. Moreover, we show by an information-theoretic argument that our guarantees are nearly optimal in terms of the fraction of sampled entries on the authentic columns, the fraction of corrupted columns, and the rank of the underlying matrix. Our results therefore sharply characterize the tradeoffs between sample, robustness and rank in matrix completion.

View on arXiv
Comments on this paper