ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1101.3712
59
5

Generic identification of binary-valued hidden Markov processes

19 January 2011
A. Schonhuth
ArXivPDFHTML
Abstract

The generic identification problem is to decide whether a stochastic process (Xt)(X_t)(Xt​) is a hidden Markov process and if yes to infer its parameters for all but a subset of parametrizations that form a lower-dimensional subvariety in parameter space. Partial answers so far available depend on extra assumptions on the processes, which are usually centered around stationarity. Here we present a general solution for binary-valued hidden Markov processes. Our approach is rooted in algebraic statistics hence it is geometric in nature. We find that the algebraic varieties associated with the probability distributions of binary-valued hidden Markov processes are zero sets of determinantal equations which draws a connection to well-studied objects from algebra. As a consequence, our solution allows for algorithmic implementation based on elementary (linear) algebraic routines.

View on arXiv
Comments on this paper