Iterative imputation, in which variables are imputed one at a time each given a model predicting from all the others, is a popular technique that can be convenient and flexible, as it replaces a potentially difficult multivariate modeling problem with relatively simple univariate regressions. In this paper, we begin to characterize the stationary distributions of iterative imputations and their statistical properties. More precisely, when the conditional models are compatible (defined in the text), we give a set of sufficient conditions under which the imputation distribution converges in total variation to the posterior distribution of a Bayesian model. When the conditional models are incompatible but are valid, we show that the combined imputation estimator is consistent.
View on arXiv