ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1012.2789
58
849

Experimental Comparison of Representation Methods and Distance Measures for Time Series Data

9 December 2010
Xiaoyue Wang
Hui Ding
Goce Trajcevski
P. Scheuermann
Eamonn Keogh
    AI4TS
ArXivPDFHTML
Abstract

The previous decade has brought a remarkable increase of the interest in applications that deal with querying and mining of time series data. Many of the research efforts in this context have focused on introducing new representation methods for dimensionality reduction or novel similarity measures for the underlying data. In the vast majority of cases, each individual work introducing a particular method has made specific claims and, aside from the occasional theoretical justifications, provided quantitative experimental observations. However, for the most part, the comparative aspects of these experiments were too narrowly focused on demonstrating the benefits of the proposed methods over some of the previously introduced ones. In order to provide a comprehensive validation, we conducted an extensive experimental study re-implementing eight different time series representations and nine similarity measures and their variants, and testing their effectiveness on thirty-eight time series data sets from a wide variety of application domains. In this paper, we give an overview of these different techniques and present our comparative experimental findings regarding their effectiveness. In addition to providing a unified validation of some of the existing achievements, our experiments also indicate that, in some cases, certain claims in the literature may be unduly optimistic.

View on arXiv
Comments on this paper