We present a multi-level graph partitioning algorithm using novel local improvement algorithms and global search strategies transferred from the multi-grid community. Local improvement algorithms are based max-flow min-cut computations and more localized FM searches. By combining these techniques, we obtain an algorithm that is fast on the one hand and on the other hand is able to improve the best known partitioning results for many inputs. For example, in Walshaw's well known benchmark tables we achieve 317 improvements for the tables 1%, 3% and 5% imbalance. Moreover, in 118 additional cases we have been able to reproduce the best cut in this benchmark.
View on arXiv