ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1011.6649
72
354

Dimension Reduction and Alleviation of Confounding for Spatial Generalized Linear Mixed Models

30 November 2010
John Hughes
M. Haran
ArXiv (abs)PDFHTML
Abstract

Non-gaussian spatial data are very common in many disciplines. For instance, count data are common in disease mapping, and binary data are common in ecology. When fitting spatial regressions for such data, one needs to account for dependence to ensure reliable inference for the regression coefficients. The spatial generalized linear mixed model (SGLMM) offers a very popular and flexible approach to modeling such data, but the SGLMM suffers from three major shortcomings: (1) uninterpretability of parameters due to spatial confounding, (2) variance inflation due to spatial confounding, and (3) high-dimensional spatial random effects that make fully Bayesian inference for such models computationally challenging. We propose a new parameterization of the SGLMM that alleviates spatial confounding and speeds computation by greatly reducing the dimension of the spatial random effects. We illustrate the application of our approach to simulated binary, count, and Gaussian spatial datasets, and to a large infant mortality dataset.

View on arXiv
Comments on this paper