ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1011.5053
559
9
v1v2 (latest)

Tight Sample Complexity of Large-Margin Learning

23 November 2010
Sivan Sabato
Nathan Srebro
Naftali Tishby
ArXiv (abs)PDFHTML
Abstract

We obtain a tight distribution-specific characterization of the sample complexity of large-margin classification with L_2 regularization: We introduce the \gamma-adapted-dimension, which is a simple function of the spectrum of a distribution's covariance matrix, and show distribution-specific upper and lower bounds on the sample complexity, both governed by the \gamma-adapted-dimension of the source distribution. We conclude that this new quantity tightly characterizes the true sample complexity of large-margin classification. The bounds hold for a rich family of sub-Gaussian distributions.

View on arXiv
Comments on this paper