ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1011.0096
96
11

Concentration inequalities of the cross-validation estimator for Empirical Risk Minimiser

30 October 2010
Matthieu Cornec
ArXiv (abs)PDFHTML
Abstract

In this article, we derive concentration inequalities for the cross-validation estimate of the generalization error for empirical risk minimizers. In the general setting, we prove sanity-check bounds in the spirit of \cite{KR99} \textquotedblleft\textit{bounds showing that the worst-case error of this estimate is not much worse that of training error estimate} \textquotedblright . General loss functions and class of predictors with finite VC-dimension are considered. We closely follow the formalism introduced by \cite{DUD03} to cover a large variety of cross-validation procedures including leave-one-out cross-validation, kkk% -fold cross-validation, hold-out cross-validation (or split sample), and the leave-υ\upsilonυ-out cross-validation. In particular, we focus on proving the consistency of the various cross-validation procedures. We point out the interest of each cross-validation procedure in terms of rate of convergence. An estimation curve with transition phases depending on the cross-validation procedure and not only on the percentage of observations in the test sample gives a simple rule on how to choose the cross-validation. An interesting consequence is that the size of the test sample is not required to grow to infinity for the consistency of the cross-validation procedure.

View on arXiv
Comments on this paper