60
13

Dirichlet mean identities and laws of a class of subordinators

Abstract

An interesting line of research is the investigation of the laws of random variables known as Dirichlet means. However, there is not much information on interrelationships between different Dirichlet means. Here, we introduce two distributional operations, one of which consists of multiplying a mean functional by an independent beta random variable, the other being an operation involving an exponential change of measure. These operations identify relationships between different means and their densities. This allows one to use the often considerable analytic work on obtaining results for one Dirichlet mean to obtain results for an entire family of otherwise seemingly unrelated Dirichlet means. Additionally, it allows one to obtain explicit densities for the related class of random variables that have generalized gamma convolution distributions and the finite-dimensional distribution of their associated L\'{e}vy processes. The importance of this latter statement is that L\'{e}vy processes now commonly appear in a variety of applications in probability and statistics, but there are relatively few cases where the relevant densities have been described explicitly. We demonstrate how the technique allows one to obtain the finite-dimensional distribution of several interesting subordinators which have recently appeared in the literature.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.