The increment ratio (IR) statistic was first defined and studied in Surgailis {\it et al.} (2007) for estimating the memory parameter either of a stationary or an increment stationary Gaussian process. Here three extensions are proposed in the case of stationary processes. Firstly, a multidimensional central limit theorem is established for a vector composed by several IR statistics. Secondly, a goodness-of-fit -type test can be deduced from this theorem. Finally, this theorem allows to construct adaptive versions of the estimator and test which are studied in a general semiparametric frame. The adaptive estimator of the long-memory parameter is proved to follow an oracle property. Simulations attest of the interesting accuracies and robustness of the estimator and test, even in the non Gaussian case.
View on arXiv