126
16

A Smoothing Stochastic Gradient Method for Composite Optimization

Abstract

We consider the unconstrained optimization problem whose objective function is composed of a smooth and a non-smooth conponents where the smooth component is the expectation a random function. This type of problem arises in some interesting applications in machine learning. We propose a stochastic gradient descent algorithm for this class of optimization problem. When the non-smooth component has a particular structure, we propose another stochastic gradient descent algorithm by incorporating a smoothing method into our first algorithm. The proofs of the convergence rates of these two algorithms are given and we show the numerical performance of our algorithm by applying them to regularized linear regression problems with different sets of synthetic data.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.