ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1008.3187
56
27

Polynomial-Time Approximation Schemes for Knapsack and Related Counting Problems using Branching Programs

18 August 2010
Parikshit Gopalan
Adam R. Klivans
Raghu Meka
ArXivPDFHTML
Abstract

We give a deterministic, polynomial-time algorithm for approximately counting the number of {0,1}-solutions to any instance of the knapsack problem. On an instance of length n with total weight W and accuracy parameter eps, our algorithm produces a (1 + eps)-multiplicative approximation in time poly(n,log W,1/eps). We also give algorithms with identical guarantees for general integer knapsack, the multidimensional knapsack problem (with a constant number of constraints) and for contingency tables (with a constant number of rows). Previously, only randomized approximation schemes were known for these problems due to work by Morris and Sinclair and work by Dyer. Our algorithms work by constructing small-width, read-once branching programs for approximating the underlying solution space under a carefully chosen distribution. As a byproduct of this approach, we obtain new query algorithms for learning functions of k halfspaces with respect to the uniform distribution on {0,1}^n. The running time of our algorithm is polynomial in the accuracy parameter eps. Previously even for the case of k=2, only algorithms with an exponential dependence on eps were known.

View on arXiv
Comments on this paper