ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1008.0055
66
1

Parametric families on large binary spaces

31 July 2010
Christian Schafer
ArXivPDFHTML
Abstract

In the context of adaptive Monte Carlo algorithms, we cannot directly generate independent samples from the distribution of interest but use a proxy which we need to be close to the target. Generally, such a proxy distribution is a parametric family on the sampling spaces of the target distribution. For continuous sampling problems in high dimensions, we often use the multivariate normal distribution as a proxy for we can easily parametrise it by its moments and quickly sample from it. Our objective is to construct similarly flexible parametric families on binary sampling spaces too large for exhaustive enumeration. The binary sampling problem is more difficult than its continuous counterpart since the choice of a suitable proxy distribution is not obvious.

View on arXiv
Comments on this paper