ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1006.3918
76
65

On deconvolution of distribution functions

20 June 2010
I. Dattner
A. Goldenshluger
A. Juditsky
ArXivPDFHTML
Abstract

The subject of this paper is the problem of nonparametric estimation of a continuous distribution function from observations with measurement errors. We study minimax complexity of this problem when unknown distribution has a density belonging to the Sobolev class, and the error density is ordinary smooth. We develop rate optimal estimators based on direct inversion of empirical characteristic function. We also derive minimax affine estimators of the distribution function which are given by an explicit convex optimization problem. Adaptive versions of these estimators are proposed, and some numerical results demonstrating good practical behavior of the developed procedures are presented.

View on arXiv
Comments on this paper