83
3

Asymptotic efficiency of p-mean tests for means in high dimensions

Abstract

The asymptotic efficiency, ARE_{p,2}, of the tests for multivariate means theta in \R^d based on the p-means relative to the standard 2-mean, (approximate) likelihood ratio test (LRT), is considered for large dimensions d. It turns out that these p-mean tests for p>2 may greatly outperform the LRT while never being significantly worse than the LRT. For instance, ARE_{p,2} for p=3 varies from about 0.96 to \infty, depending on the direction of the alternative mean vector theta_1, for the null hypothesis H_0: theta=\0. These results are based on a complete characterization, under certain general and natural conditions, of the varying pairs (n,theta_1) for which the values of the power of the p-mean test for theta=\0 and theta=theta_1 tend, respectively, to prescribed values alpha and beta. The proofs use such classic results as the Berry-Esseen bound in the central limit theorem and the conditions of convergence to a given infinitely divisible distribution, as well as a recent result by the author on the Schur^2-concavity properties of Gaussian measures.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.