ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1005.3502
53
0

Using machine learning to make constraint solver implementation decisions

19 May 2010
Lars Kotthoff
Ian P. Gent
Ian Miguel
    AI4CE
ArXivPDFHTML
Abstract

Programs to solve so-called constraint problems are complex pieces of software which require many design decisions to be made more or less arbitrarily by the implementer. These decisions affect the performance of the finished solver significantly. Once a design decision has been made, it cannot easily be reversed, although a different decision may be more appropriate for a particular problem. We investigate using machine learning to make these decisions automatically depending on the problem to solve with the alldifferent constraint as an example. Our system is capable of making non-trivial, multi-level decisions that improve over always making a default choice.

View on arXiv
Comments on this paper