148
361
v1v2v3v4v5 (latest)

Random graphs with a given degree sequence

Abstract

Large graphs are sometimes studied through their degree sequences (power law or regular graphs). We study graphs that are uniformly chosen with a given degree sequence. Under mild conditions, it is shown that sequences of such graphs have graph limits in the sense of Lov\'{a}sz and Szegedy with identifiable limits. This allows simple determination of other features such as the number of triangles. The argument proceeds by studying a natural exponential model having the degree sequence as a sufficient statistic. The maximum likelihood estimate (MLE) of the parameters is shown to be unique and consistent with high probability. Thus nn parameters can be consistently estimated based on a sample of size one. A fast, provably convergent, algorithm for the MLE is derived. These ingredients combine to prove the graph limit theorem. Along the way, a continuous version of the Erd\H{o}s--Gallai characterization of degree sequences is derived.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.