In this paper we derive lower bounds in minimax sense for estimation of the instantaneous volatility if the diffusion type part cannot be observed directly but under some additional Gaussian noise. Three different models are considered. Our technique is based on a general inequality for Kullback-Leibler divergence of multivariate normal random variables and spectral analysis of the processes. The derived lower bounds are indeed optimal. Upper bounds can be found in Munk and Schmidt-Hieber [18]. Our major finding is that the Gaussian microstructure noise introduces an additional degree of ill-posedness for each model, respectively.
View on arXiv