ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1002.2845
67
57

Exact calculations for false discovery proportion with application to least favorable configurations

15 February 2010
Étienne Roquain
Fanny Villers
ArXivPDFHTML
Abstract

In a context of multiple hypothesis testing, we provide several new exact calculations related to the false discovery proportion (FDP) of step-up and step-down procedures. For step-up procedures, we show that the number of erroneous rejections conditionally on the rejection number is simply a binomial variable, which leads to explicit computations of the c.d.f., the {sss-th} moment and the mean of the FDP, the latter corresponding to the false discovery rate (FDR). For step-down procedures, we derive what is to our knowledge the first explicit formula for the FDR valid for any alternative c.d.f. of the ppp-values. We also derive explicit computations of the power for both step-up and step-down procedures. These formulas are "explicit" in the sense that they only involve the parameters of the model and the c.d.f. of the order statistics of i.i.d. uniform variables. The ppp-values are assumed either independent or coming from an equicorrelated multivariate normal model and an additional mixture model for the true/false hypotheses is used. This new approach is used to investigate new results which are of interest in their own right, related to least/most favorable configurations for the FDR and the variance of the FDP.

View on arXiv
Comments on this paper