121
15
v1v2 (latest)

Inference of global clusters from locally distributed data

Abstract

We consider the problem of analyzing the heterogeneity of clustering distributions for multiple groups of observed data, each of which is indexed by a covariate value, and inferring global clusters arising from observations aggregated over the covariate domain. We propose a novel Bayesian nonparametric method reposing on the formalism of spatial modeling and a nested hierarchy of Dirichlet processes. We provide an analysis of the model properties, relating and contrasting the notions of local and global clusters. We also provide an efficient inference algorithm, and demonstrate the utility of our method in several data examples, including the problem of object tracking and a global clustering analysis of functional data where the functional identity information is not available.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.